ログイン

Chapter 6 - Projectiles - Projectile Motion Formulae
7問 • 2年前
  • Oluwole Akande
  • 通報

    問題一覧

  • 1

    Time of Flight =

    2Usinθ / g

  • 2

    Time to Reach Greatest Height =

    Usinθ / g

  • 3

    Range on Horizontal Plane =

    U²sin2θ / g

  • 4

    Equation of Trajectory (Instantaneous Vertical Height) =

    y = xtanθ - (gx²(1 + tan²θ) / 2U²)

  • 5

    How is the Equation for Time of Flight Derived

    1 - Resolve for Vertical Motion, where u = Usinθ, a = -g, s = 0, and t is unsolved, 2 - Substitute into "s = ut + ½at²", 3 - 0 = T(Usinθ) - ½gT², 4 - 0 = T(Usinθ - gT/2), 5 - We know that either T = 0 or Usinθ - gT/2 = 0, 6 - Rearrange to get T = 2Usinθ / g

  • 6

    How is the Equation for Horizontal Range Derived

    1 - Resolve Horizontally, where v = Ucosθ, s = R, and t = T, 2 - Substitute into "s = vt", 3 - R = Ucosθ × T, 4 - We know that T = 2Usinθ / g, therefore R = Ucosθ × 2Usinθ / g, 5 - R = 2U²sinθcosθ / g, 6 - Using the Double Angle Formula, 2sinθcosθ = sin2θ, 7 - Therefore R = U²sin2θ / g

  • 7

    How is the Equation for the Trajectory of a particle Derived

    1 - We know that U(x) = Ucosθ, and U(y) = Usinθ, 2 - We know that for horizontal motion, x = vt = Ucosθ × t, where x is the horizontal displacement, 3 - We know that for vertical motion, y = ut + ½at² = (Usinθ × t) - ½gt², where y is the vertical height, 4 - Rearrange Equation 2 for t》t = x / Ucosθ, 5 - Substitute Equation 4 into Equation 3》y = (Usinθ × x / Ucosθ) - ½g(x / Ucosθ)², 6 - We know that tanθ = sinθ/cosθ, and 1/cosθ = secθ, 7 - Substitute into Equation 5 》y = xtanθ - (sec²θ)gx²/2u², 8 - We know that sec²θ = 1 + tan²θ, 9 - Substitute into Equation 7 》 y = xtanθ - (gx²(1 + tan²θ)/ 2u²)

  • All Maths Notation

    All Maths Notation

    Oluwole Akande · 72問 · 2年前

    All Maths Notation

    All Maths Notation

    72問 • 2年前
    Oluwole Akande

    Financial Ratio Analysis - Liquidity Ratios and Gearing

    Financial Ratio Analysis - Liquidity Ratios and Gearing

    Oluwole Akande · 9問 · 3年前

    Financial Ratio Analysis - Liquidity Ratios and Gearing

    Financial Ratio Analysis - Liquidity Ratios and Gearing

    9問 • 3年前
    Oluwole Akande

    Topic 6 - Further Mechanics - Glossary

    Topic 6 - Further Mechanics - Glossary

    Oluwole Akande · 8問 · 2年前

    Topic 6 - Further Mechanics - Glossary

    Topic 6 - Further Mechanics - Glossary

    8問 • 2年前
    Oluwole Akande

    Command Words

    Command Words

    Oluwole Akande · 26問 · 2年前

    Command Words

    Command Words

    26問 • 2年前
    Oluwole Akande

    Circuit Symbols

    Circuit Symbols

    Oluwole Akande · 15問 · 2年前

    Circuit Symbols

    Circuit Symbols

    15問 • 2年前
    Oluwole Akande

    Topic 4 - Materials - Upthrust and Viscosity

    Topic 4 - Materials - Upthrust and Viscosity

    Oluwole Akande · 5問 · 2年前

    Topic 4 - Materials - Upthrust and Viscosity

    Topic 4 - Materials - Upthrust and Viscosity

    5問 • 2年前
    Oluwole Akande

    Topic 5 - Waves and Particle Nature of Light - Ray Diagrams

    Topic 5 - Waves and Particle Nature of Light - Ray Diagrams

    Oluwole Akande · 5問 · 2年前

    Topic 5 - Waves and Particle Nature of Light - Ray Diagrams

    Topic 5 - Waves and Particle Nature of Light - Ray Diagrams

    5問 • 2年前
    Oluwole Akande

    Topic 8 - Nuclear and Particle Physics - Linear Accelerator and Particle Detectors

    Topic 8 - Nuclear and Particle Physics - Linear Accelerator and Particle Detectors

    Oluwole Akande · 14問 · 2年前

    Topic 8 - Nuclear and Particle Physics - Linear Accelerator and Particle Detectors

    Topic 8 - Nuclear and Particle Physics - Linear Accelerator and Particle Detectors

    14問 • 2年前
    Oluwole Akande

    Topic 10 - Space - Trigonometric Parallax

    Topic 10 - Space - Trigonometric Parallax

    Oluwole Akande · 8問 · 2年前

    Topic 10 - Space - Trigonometric Parallax

    Topic 10 - Space - Trigonometric Parallax

    8問 • 2年前
    Oluwole Akande

    Topic 7 - Electric and Magnetic Fields - Glossary

    Topic 7 - Electric and Magnetic Fields - Glossary

    Oluwole Akande · 7問 · 2年前

    Topic 7 - Electric and Magnetic Fields - Glossary

    Topic 7 - Electric and Magnetic Fields - Glossary

    7問 • 2年前
    Oluwole Akande

    Chapter 7 - Electric and Magnetic Fields - Coulomb's Law

    Chapter 7 - Electric and Magnetic Fields - Coulomb's Law

    Oluwole Akande · 7問 · 2年前

    Chapter 7 - Electric and Magnetic Fields - Coulomb's Law

    Chapter 7 - Electric and Magnetic Fields - Coulomb's Law

    7問 • 2年前
    Oluwole Akande

    Chapter 7 - Electric and Magnetic Fields - Electric Field Strength

    Chapter 7 - Electric and Magnetic Fields - Electric Field Strength

    Oluwole Akande · 11問 · 2年前

    Chapter 7 - Electric and Magnetic Fields - Electric Field Strength

    Chapter 7 - Electric and Magnetic Fields - Electric Field Strength

    11問 • 2年前
    Oluwole Akande

    Chapter 7 - Electric and Magnetic Fields - Electric Potential

    Chapter 7 - Electric and Magnetic Fields - Electric Potential

    Oluwole Akande · 12問 · 2年前

    Chapter 7 - Electric and Magnetic Fields - Electric Potential

    Chapter 7 - Electric and Magnetic Fields - Electric Potential

    12問 • 2年前
    Oluwole Akande

    Chapter 7 - Electric and Magnetic Fields - Capacitor Discharge

    Chapter 7 - Electric and Magnetic Fields - Capacitor Discharge

    Oluwole Akande · 11問 · 2年前

    Chapter 7 - Electric and Magnetic Fields - Capacitor Discharge

    Chapter 7 - Electric and Magnetic Fields - Capacitor Discharge

    11問 • 2年前
    Oluwole Akande

    問題一覧

  • 1

    Time of Flight =

    2Usinθ / g

  • 2

    Time to Reach Greatest Height =

    Usinθ / g

  • 3

    Range on Horizontal Plane =

    U²sin2θ / g

  • 4

    Equation of Trajectory (Instantaneous Vertical Height) =

    y = xtanθ - (gx²(1 + tan²θ) / 2U²)

  • 5

    How is the Equation for Time of Flight Derived

    1 - Resolve for Vertical Motion, where u = Usinθ, a = -g, s = 0, and t is unsolved, 2 - Substitute into "s = ut + ½at²", 3 - 0 = T(Usinθ) - ½gT², 4 - 0 = T(Usinθ - gT/2), 5 - We know that either T = 0 or Usinθ - gT/2 = 0, 6 - Rearrange to get T = 2Usinθ / g

  • 6

    How is the Equation for Horizontal Range Derived

    1 - Resolve Horizontally, where v = Ucosθ, s = R, and t = T, 2 - Substitute into "s = vt", 3 - R = Ucosθ × T, 4 - We know that T = 2Usinθ / g, therefore R = Ucosθ × 2Usinθ / g, 5 - R = 2U²sinθcosθ / g, 6 - Using the Double Angle Formula, 2sinθcosθ = sin2θ, 7 - Therefore R = U²sin2θ / g

  • 7

    How is the Equation for the Trajectory of a particle Derived

    1 - We know that U(x) = Ucosθ, and U(y) = Usinθ, 2 - We know that for horizontal motion, x = vt = Ucosθ × t, where x is the horizontal displacement, 3 - We know that for vertical motion, y = ut + ½at² = (Usinθ × t) - ½gt², where y is the vertical height, 4 - Rearrange Equation 2 for t》t = x / Ucosθ, 5 - Substitute Equation 4 into Equation 3》y = (Usinθ × x / Ucosθ) - ½g(x / Ucosθ)², 6 - We know that tanθ = sinθ/cosθ, and 1/cosθ = secθ, 7 - Substitute into Equation 5 》y = xtanθ - (sec²θ)gx²/2u², 8 - We know that sec²θ = 1 + tan²θ, 9 - Substitute into Equation 7 》 y = xtanθ - (gx²(1 + tan²θ)/ 2u²)