問題一覧
1
If the maximum principal stress applied to an object exceeds the material's yield strength (|σ_max| ≥ σ_y), failure will occur
2
When the material is brittle or is likely to fail through fatigue – for ductile materials, other failure criterion are more applicable
3
It is dependent on plastic behaviour, where bonds between molecules are rearranged, and occurs due to shear forces (typically fails at an angle of 45°)
4
If the maximum shear stress applied to an object exceeds the material's shear strength (τ_max > τ_y), failure will occur
5
Uniaxial Loading – τ_y = σ_y / 2 Where τ_y is the shear yield stress and σ_y is the tensile yield strength, Dual-Axis Loading – τ_max = (σ¹ – σ²)/2 Where τ_max is the maximum shear stress and σ¹ & σ¹ are the maximum and minimum principal stresses
6
σ_max – σ_min ≥ σ_y
7
The stress state of a material where the principal stresses are the same along all three axes (σ¹ = σ² = σ³) – such a stress state will never result in failure under the Tresca criteria
8
A material will fail if the maximum shear energy applied exceeds the material's yield value (W_d,max > W_d,y)
9
W_d,max = (1 / 12G) • [(σ¹ – σ²)² + (σ² – σ³)² + (σ³ – σ¹)²] Where G is the shear modulus and σ represents the principal stresses along each axis, W_d,y = (1 / 6G) • (σ_y)² Where σ_y is the yield stress, W_d,y = (1 / 2G) • (τ_y)² Where τ_y is the shear yield stress
10
√(½ • ((σ¹ – σ²)² + (σ² – σ³)² + (σ³ – σ¹)²)) ≥ σ_y Where σ represents the principal and yield stresses
11
Maximum Applied Stress – Square, Tresca – Hexagonal, von Mises – Elliptical
All Maths Notation
All Maths Notation
Oluwole Akande · 72問 · 2年前All Maths Notation
All Maths Notation
72問 • 2年前Financial Ratio Analysis - Liquidity Ratios and Gearing
Financial Ratio Analysis - Liquidity Ratios and Gearing
Oluwole Akande · 9問 · 3年前Financial Ratio Analysis - Liquidity Ratios and Gearing
Financial Ratio Analysis - Liquidity Ratios and Gearing
9問 • 3年前Topic 6 - Further Mechanics - Glossary
Topic 6 - Further Mechanics - Glossary
Oluwole Akande · 8問 · 2年前Topic 6 - Further Mechanics - Glossary
Topic 6 - Further Mechanics - Glossary
8問 • 2年前Command Words
Command Words
Oluwole Akande · 26問 · 2年前Command Words
Command Words
26問 • 2年前Circuit Symbols
Circuit Symbols
Oluwole Akande · 15問 · 2年前Circuit Symbols
Circuit Symbols
15問 • 2年前Topic 4 - Materials - Upthrust and Viscosity
Topic 4 - Materials - Upthrust and Viscosity
Oluwole Akande · 5問 · 2年前Topic 4 - Materials - Upthrust and Viscosity
Topic 4 - Materials - Upthrust and Viscosity
5問 • 2年前Topic 5 - Waves and Particle Nature of Light - Ray Diagrams
Topic 5 - Waves and Particle Nature of Light - Ray Diagrams
Oluwole Akande · 5問 · 2年前Topic 5 - Waves and Particle Nature of Light - Ray Diagrams
Topic 5 - Waves and Particle Nature of Light - Ray Diagrams
5問 • 2年前Topic 8 - Nuclear and Particle Physics - Linear Accelerator and Particle Detectors
Topic 8 - Nuclear and Particle Physics - Linear Accelerator and Particle Detectors
Oluwole Akande · 14問 · 2年前Topic 8 - Nuclear and Particle Physics - Linear Accelerator and Particle Detectors
Topic 8 - Nuclear and Particle Physics - Linear Accelerator and Particle Detectors
14問 • 2年前Topic 10 - Space - Trigonometric Parallax
Topic 10 - Space - Trigonometric Parallax
Oluwole Akande · 8問 · 2年前Topic 10 - Space - Trigonometric Parallax
Topic 10 - Space - Trigonometric Parallax
8問 • 2年前Topic 7 - Electric and Magnetic Fields - Glossary
Topic 7 - Electric and Magnetic Fields - Glossary
Oluwole Akande · 7問 · 2年前Topic 7 - Electric and Magnetic Fields - Glossary
Topic 7 - Electric and Magnetic Fields - Glossary
7問 • 2年前Chapter 7 - Electric and Magnetic Fields - Coulomb's Law
Chapter 7 - Electric and Magnetic Fields - Coulomb's Law
Oluwole Akande · 7問 · 2年前Chapter 7 - Electric and Magnetic Fields - Coulomb's Law
Chapter 7 - Electric and Magnetic Fields - Coulomb's Law
7問 • 2年前Chapter 7 - Electric and Magnetic Fields - Electric Field Strength
Chapter 7 - Electric and Magnetic Fields - Electric Field Strength
Oluwole Akande · 11問 · 2年前Chapter 7 - Electric and Magnetic Fields - Electric Field Strength
Chapter 7 - Electric and Magnetic Fields - Electric Field Strength
11問 • 2年前Chapter 7 - Electric and Magnetic Fields - Electric Potential
Chapter 7 - Electric and Magnetic Fields - Electric Potential
Oluwole Akande · 12問 · 2年前Chapter 7 - Electric and Magnetic Fields - Electric Potential
Chapter 7 - Electric and Magnetic Fields - Electric Potential
12問 • 2年前Chapter 7 - Electric and Magnetic Fields - Capacitor Discharge
Chapter 7 - Electric and Magnetic Fields - Capacitor Discharge
Oluwole Akande · 11問 · 2年前Chapter 7 - Electric and Magnetic Fields - Capacitor Discharge
Chapter 7 - Electric and Magnetic Fields - Capacitor Discharge
11問 • 2年前問題一覧
1
If the maximum principal stress applied to an object exceeds the material's yield strength (|σ_max| ≥ σ_y), failure will occur
2
When the material is brittle or is likely to fail through fatigue – for ductile materials, other failure criterion are more applicable
3
It is dependent on plastic behaviour, where bonds between molecules are rearranged, and occurs due to shear forces (typically fails at an angle of 45°)
4
If the maximum shear stress applied to an object exceeds the material's shear strength (τ_max > τ_y), failure will occur
5
Uniaxial Loading – τ_y = σ_y / 2 Where τ_y is the shear yield stress and σ_y is the tensile yield strength, Dual-Axis Loading – τ_max = (σ¹ – σ²)/2 Where τ_max is the maximum shear stress and σ¹ & σ¹ are the maximum and minimum principal stresses
6
σ_max – σ_min ≥ σ_y
7
The stress state of a material where the principal stresses are the same along all three axes (σ¹ = σ² = σ³) – such a stress state will never result in failure under the Tresca criteria
8
A material will fail if the maximum shear energy applied exceeds the material's yield value (W_d,max > W_d,y)
9
W_d,max = (1 / 12G) • [(σ¹ – σ²)² + (σ² – σ³)² + (σ³ – σ¹)²] Where G is the shear modulus and σ represents the principal stresses along each axis, W_d,y = (1 / 6G) • (σ_y)² Where σ_y is the yield stress, W_d,y = (1 / 2G) • (τ_y)² Where τ_y is the shear yield stress
10
√(½ • ((σ¹ – σ²)² + (σ² – σ³)² + (σ³ – σ¹)²)) ≥ σ_y Where σ represents the principal and yield stresses
11
Maximum Applied Stress – Square, Tresca – Hexagonal, von Mises – Elliptical