問題一覧
1
【地盤】 2.圧密沈下は、地震時において生じる現象である。
✕
2
【地盤】 15.地盤の長期許容応力度は、標準貫入試験によるN値が同じであれば、砂質地盤と粘質地盤とで同一の値となる。
✕
3
【基礎】 29.鉄筋コンクリート造の基礎の設計においては、一般に、風圧力については考慮しなくても良い。
○
4
【木造建築物の基礎】 47.地盤の長期許容応力度(地耐力)が40kN/㎡の場合、木造2階建の建築物にあっては、鉄筋コンクリート造の布基礎の底盤の幅を24cmとした。
✕
5
【地盤】 21.地下水位が高いほど、地下外壁に作用する力は大きくなる。
○
6
【木造建築物の基礎】 62.基礎の上にねこ土台を設けたので、土台の全周にわたって、Im当たり有効換気面積が75cm2以上となるようにした。
○
7
【地盤】 17.一般の地盤においては、堅い粘土質地盤は、密実な砂質地盤に比べて、許容応力度が大きい。
✕
8
【地盤】 9.地下水位が高く、かつ、緩く堆積した砂質地盤は、一般に、地震時に液状化しやすい。
○
9
【基礎】 42.杭基礎の許容支持力は、杭の支持力のみによるものとし、一般に、基礎スラブ底面における地盤の支持力を加算しない。
○
10
【地盤】 22.土の単位体積重量が大きければ、一般に、地下外壁に作用する土圧は小さくなる。土圧は大きくなる
✕
11
【地盤】 14.粘土層は、長期間にわたって圧縮力を受けると、圧密沈下を起こしやすい。
○
12
【基礎】 31.地盤の支持力は、一般に、基礎底面の位置(根入れ深さ)が深いほど小さくなる。
✕
13
【基礎】 46.地盤が凍結する地域における基礎底面の位置(根入れ深さ)は、地盤の凍結する深さよりも浅くする。
✕
14
【地盤】 19.シルトの粒径は、砂より小さく、粘土より大きい。
○
15
【木造建築物の基礎】 56.べた基礎の立上り部分の主筋として、異形鉄筋D10を立上り部分の上下端に1本ずつ配置した。
✕
16
【基礎】 33.基礎梁の剛性を小さくすることは、不同沈下の影響を滅少させるために有効である。
✕
17
【地盤】 5.一般に、沖積層は洪積層よりも地耐力が大きい。
✕
18
【木造建築物の基礎】 59.木造2階建住宅において、地盤の長期許容応力度(地耐力)が25kN/m2であったので、底盤の厚さ12cmのべた基礎とした。
○
19
【基礎】 28.同一建築物においては、埋込み杭と場所打ちコンクリート杭の混用は好ましくない。
○
20
【地盤】 12.一般に、標準貫入試験によるN値の大きい地盤ほど、その地耐力は大きい。
○
21
【地盤】 24.ポイリングとは、砂中を上向きに流れる水流圧力によって、砂粒がかきまわされ湧き上がる現象である。
○
22
【地盤】 1.圧密沈下対策としては、サンドドレーン工法などの締め固め工法が用いられる。
✕
23
【基礎】 40.圧密沈下が生ずる可能性のある地層を貫く支持杭の設計においては、杭周面に下向きに作用する摩擦力(ネガティプ・フリクション)を考慮する。
○
24
【基礎】 27.同一建築物であっても、地盤の状況に応じて、支持杭と摩擦杭を混用する方がよい。
✕
25
【地盤】 16.一般に、粘性土地盤と砂質土地盤において、N値が同じ場合の地耐力は砂質土地盤の方が粘性土地盤より小さい。
○
26
【地盤】 11.地下水位面以深にある飽和砂質土層については液状化の可能性を検討しなくてもよい。
✕
27
【基礎】 44.杭を複数本設置する場合、杭間隔を密にするほうが有効である。
✕
28
【基礎】 41.負の摩擦力とは、軟弱地盤等において、周囲の地盤が沈下することにより、杭の周面に上向きに作用する摩擦力のことである。
✕
29
【木造建築物の基礎】 51.木造2階建住宅において、地盤の長期許容応力度(地耐力)が35kN/m2であったので、底盤の幅45cmの鉄筋コンクリート造の布基礎とした。
○
30
【木造建築物の基礎】 53.凍結のおそれのない地域であったので、鉄筋コンクリート造の布基礎の根入れ深さを、25cmとした。
○
31
【基礎】 30.直接基礎の場合、一般に、基礎の根入れ深さにかかわらず地盤の支持力は一定である。
✕
32
【地盤】 18.一般の地盤において、地盤の長期許容応力度の大小関係は、岩盤>粘土質地盤>密実な砂質地盤である。
✕
33
【基礎】 39.支持杭の許容支持力には、杭周面と地盤との摩擦力は加算しない。
✕
34
【基礎】 37.場所打ちコンクリート杭の外面は、一般に凹凸が多いので、その断面積は、部分的に設計断面積を下回ってもよい。
✕
35
【基礎】 26.ひとつの建築物であっても、地盤の状況に応じて、異なる基礎形式を混用する方がよい。
✕
36
【木造建築物の基礎】 52.布基礎の根入れ深さを、地面から12cmとした。
✕
37
【木造建築物の基礎】 48.木造2階建住宅において、地盤の長期許容応力度(地耐力)が15kN/㎡であったので、杭地業としたうえで鉄筋コンクリート造の布基礎とした。
○
38
【木造建築物の基礎】 55.布基礎の立上り部分の主筋として、D13を立上り部分の上下端に1本ずつ配置した。
○
39
【基礎】 45.杭基礎は、一般に、地震時においても上部構造を安全に支持するために、上部構造と同等またはそれ以上の耐震性能を確保するべきである。
○
40
【基礎】 38.支持杭とは、軟弱な地層を貫いて硬い層まで到達し、主としてその先端抵抗で支持させる杭のことである。
○
41
【木造建築物の基礎】 60.外周部の布基礎において、有効換気面積150cm2の床下換気口を4mの間隔で設けた。
✕
42
【木造建築物の基礎】 58.地盤の長期許容応力度が70kN/m2であったので、べた基礎の底盤の厚さを10cmとした。
✕
43
【基礎】 35.独立フーチング基礎とは、単一の柱からの荷重を独立したフーチングによって支持する基礎のことである。
○
44
【基礎】 34.直接基礎とは、基礎スラブからの荷重を直接地盤に伝える形式の基礎のことである。
○
45
【基礎】 36.場所打ちコンクリート杭の断面積は、その平均の断面積が、設計断面積の1.25倍であれば、設計断面積以下の部分があってもよい。
✕
46
【木造建築物の基礎】 61.基礎断熱工法としたので、床下換気孔を設けなかった。
○
47
【地盤】 13.一般に、粘土質地盤では液状化が問題となりやすい。
✕
48
【基礎】 43.一般的な杭基礎の設計においては、基礎スラブ底面の地盤の抵抗力を無視するのが原則である。
○
49
【木造建築物の基礎】 49.木造2階建住宅において、地盤の長期許容応力度(地耐力)が25kN/m2であったので、底盤の幅70cmの鉄筋コンクリート造の布基礎とした。
✕
50
【地盤】 3.載荷とほぼ同時に短時間に生じる基礎の沈下を、「圧密沈下」という。
✕
51
【地盤】 7.液状化とは、水で飽和した砂が、振動・衝撃などによる間隙水圧の上昇のためにせん断抵抗を失う現象である。
○
52
【地盤】 10.地下水が豊富に存在する場合、粘土主体の地層であっても、砂質土層と同程度に液状化が生じやすい。
✕
53
【基礎】 25.不同沈下を滅少させるには、地中梁の剛性は小さい方が良い。
✕
54
【地盤】 4.圧密とは、地盤の「強度の増大」、「沈下の抑制」、「止水」等に必要な土の性質の改善を目的として、土に脱水処理を施すことである。
✕
55
【基礎】 32.直接基礎の底面は、乾燥や凍結等によって土が体積変化を起こすおそれがなく、かつ、雨水等によって洗掘されるおそれが無い深さまで下げる。
○
56
【木造建築物の基礎】 54.布基礎の立上り部分の高さを、地上部分で40cmとした。
○
57
【地盤】 6.沖積層は、一般に、支持地盤として安定している洪積層に比べて、支持力不足や地盤沈下が生じやすい。
○
58
【木造建築物の基礎】 50.木造3階建の建築物において、地盤の長期許容応力度(地耐力)が70kN/㎡であったので、底盤の幅25cmの鉄筋コンクリート造の布基礎とした。
✕
59
【地盤】 20.土の粒径の大小関係は、粘土>シルト>砂である。
✕
60
【木造建築物の基礎】 57.建設地が地盤の凍結のおそれのない地域であったので、べた基礎の根入れ深さを18cmとした。
○
61
【地盤】 23.盤ぶくれとは、地下掘削において、土圧により山留め壁の背面の土が掘削面にまわり込み、根切り底面を押し上げる現象である。
✕
62
【地盤】 8.液状化とは、水で飽和した粘土が、振動・衝撃等による間隙水圧の上昇によってせん断抵抗を失う現象である。
✕