記憶度
11問
29問
0問
0問
0問
アカウント登録して、解答結果を保存しよう
問題一覧
1
What shape?
Pyramid
2
What shape?
Prism
3
What shape?
Prism
4
What shape?
Pyramid
5
What shape?
Sphere
6
What shape?
Sphere
7
What shape?
Cylinder
8
What shape?
Cylinder
9
What shape?
Cone
10
What shape?
Cone
11
What formula is this?
Distance formula
12
What equation is this?
Equation of a circle
13
What shape is this?
Rectangle
14
What shape is this?
Square
15
What shape is this?
Parallelogram
16
What shape is this?
Triangle
17
What shape is this?
Rhombus
18
What shape is this?
Kite
19
What shape is this?
Trapezoid
20
What shape is this?
Regular Polygon
21
What shape is this?
Circle
22
What shape is this?
Circle
23
What is this formula used for?
to find a side given SAS
24
What is this formula used for?
To find an angle given SSS
25
In what shapes are both pairs of opposite sides parallel?
Parallelogram , Rectangle, Rhombus, Square
26
In what shapes are are only 1 pair of opposite sides parallel?
Trapezoid, Isoceles Trapezoid
27
In what shapes are diagonals perpindicalular?
Rhombus, Square, Kite
28
In what shapes are diagonals congruent?
Rectangle, Square, Isoceles Trapezoid
29
In what shapes do diagonals bisect each other?
Parallelogram , Rectangle, Rhombus, Square
30
In what shapes are both opposite sides congruent?
Parallelogram , Rectangle , Rhombus, Square
31
In what shape is only one pair of opposite sides congruent?
Isoceles Trapezoid
32
In what shapes are all sides congruent?
Rhombus , Square
33
In what shapes are opposite angles congruent?
Parallelogram , Rectangle , Rhombus, Square
34
In what shape is only one pair of opposite angles congruent?
Kite
35
In what shapes are all angles congruent?
Rectangle , Square
36
What are the 4 theorems of parallelograms?
Opposite sides are congruent , Opposite angles are congruent, Consecutive angles are supplementary , Diagonals bisect each other
37
What formula is this for?
the number of diagonals that can be drawn from a single vertex
38
What is this formula used for?
the number of total diagonals that can be drawn
39
What is this formula used for?
the interior angle sum
40
What is this formula used for?
the exterior angle sum
41
What is this formula used for?
the measure of each interior angle (regular polygons only)
42
What is this formula used for?
the measure of each exterior angle (regular polygons only)
43
How many sides does a triangle have?
3
44
How many sides does a quadrilateral have?
4
45
How many sides does a pentagon have?
5
46
How many sides does a hexagon have?
6
47
How many sides does a heptagon have?
7
48
How many sides does a octagon have?
8
49
How many sides does a nonagon have?
9
50
How many sides does a decagon have?
10
51
How many sides does a hendecagon have?
11
52
How many sides does a dodecagon have?
12
53
What formula should be used?
x=x
54
What formula should be used?
x=1/2(a)
55
What formula should be used?
x=1/2(a-b)
56
What formula should be used?
x=1/2(a+b)
57
How do you know if there are 2 triangles?
180 - the angle you just found + the given angle < 180
58
When is this formula used?
Given SAS
59
When is this formula used? (s=half of perimeter)
Given SSS
60
When is this formula used? (s=side)
Given an equilateral triangle
61
What is the blue line?
Radius
62
What is the pink line?
Diameter
63
What is the purple line?
Chord
64
What is the green line?
Secant
65
What is the red line?
Tangent
66
What is the first tangent (red line)?
Common internal tangent
67
What is the second tangent (black line)?
Common external tangent
68
What are these?
Pythagorean identities
69
In which case can a triangle be ambiguous?
ASS
70
How do you find the midsegment of a trapezoid?
1/2(b1+b2)
71
What is the lateral area?
Area of everything except the bases
72
How do you find the number of radians?
arc length/radius
73
Vector^2=
magnitude^2
74
What are orthogonal vectors?
Vectors with 90° in between them
75
What is this formula used for?
To find the angle between two vectors
76
What does this formula find?
u×v
77
How do you find the unit vector of a vector?
(vector÷magnitude, vector÷magnitude)